

TEST NUMBER	0067837
DATE	07/05/01
PAGE	1 of 2

CLIENT	NETWORX/DIV. OF SHAW IND.
TEST METHOD CONDUCTED	AATCC Test Method 134-1996 Electrostatic Propensity

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	59224 Straightforward EW 24
COLOR	00001
ROLL	557076-9
CONSTRUCTION	Textured Loop Pile
FIBER	100% Nylon
BACKING	EcoWorx
REFERENCE	

TEST RESULTS

MAXIMUM VOLTAGE	NEG 0.7 KV

GENERAL PRINCIPLE

This method is designed to assess the static propensity of carpet by controlled laboratory simulation of conditions which are known from experience to be strongly contributory to excessive accumulation of static charges.

A carpet preconditioned to equilibrium at controlled atmospheric conditions is walked on by a test subject in a specified manner with specified shoe soles. The static charges which build up on the tester are monitored continuously by a recorder.

A neolite shoe sole has been chosen as the primary reference material because its static performance is much like that of many common leathers. It is a commonly used shoe sole material and can be easily cleaned, while its chemical and physical properties are quite uniform.

A chrome tanned leather shoe sole has been chosen for a secondary reference material because it is representative of a certain class of leathers whose performance differs significantly from that of neolite soles on certain carpet fiber. Statistically, chrome tanned leather comprises a very small percentage of the shoe sole market, but must be considered in critical applications.

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

TEST NUMBER	0067837
DATE	07/05/01
PAGE	1 of 2

CLIENT NETWORX/DIV. OF SHAW IND.

TEST METHOD CONDUCTED	ASTM E662-97 Specific Optical Density of Smoke
	Generated by Solid Materials, also referenced as NFPA
	258

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	59224 Straightforward EW 24
COLOR	00001
ROLL	557076-9
CONSTRUCTION	Textured Loop Pile
FIBER	100% Nylon
BACKING	EcoWorx
REFERENCE	

TEST RESULTS

FLAMING 146

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

TEST NUMBER	0067837
DATE	07/05/01
PAGE	2 of 2

CLIENT	NETWORX/DIV. OF SHAW IND.

ASTM E662-97 Specific Optical Density of Smoke Generated by Solid Materials, also referenced as NFPA 258

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	59224 Straightforward EW 24
COLOR	00001
ROLL	557076-9
CONSTRUCTION	Textured Loop Pile
FIBER	100% Nylon
BACKING	EcoWorx
REFERENCE	

	CONDITIONS
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE	24 Hours at 140 degrees F 24 Hours at 70 degrees F and 50% relative humidity

FURNACE VOLTAGE	112 V	IRRADIANCE	2.5 watts/sg cm
CHAMBER TEMPERATURE	95 degrees F	CHAMBER PRESSURE	3" H2O
TEST MODE	Flaming		

	_		
and the second s	1	. 2	3
Maximum Density (Dm)	156	195	145
Time to Dm (minutes)	4.5	4.5	4.5
Clear Beam (Dc)	19	23	17
Corr. Max Density (Dmc)	137	172	128
Density at 1.5 minutes	6	3	1
Density at 4.0 minutes	150	180	141
Time to 90% Dm (minutes)	4	4	4
Specimen Weight (grams)	17.0	17.3	16.3

AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES: 157

AVERAGE MAXIMUM DENSITY CORRECTED (DMC)

APPROVED BY: Say Offinny

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed it may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place Dalton, GA 30721 706-226-3283 Fax: 706-226-6787

TEST NUMBER	0067837
DATE	07/05/01
PAGE	1 of 2

CLIENT	NETWORX/DIV. OF SHAW IND.
TEST METHOD CONDUCTED	ASTM E648-97 Critical Radiant Flux of Floor Covering Systems Using A Radiant Heat Energy Source, also referenced as NFPA 253 and FTM Standard 372

DESCRIPTION OF TES	T SAMPLE	
59224 Straightforward EW 24		
00001		
557076-9	This test report relates	
Textured Loop Pile	to the installation in accordance	
100% Nylon	with the criteria set forth	
EcoWorx	in the report. Any variation	
	in the criteria may produce different results.	
	59224 Straightforward 00001 557076-9 Textured Loop Pile 100% Nylon	

TEST RESULTS

AVERAGE CRITICAL RADIANT FLUX	.78 Watts/Square Cm

GENERAL PRINCIPLE

This procedure is designed to measure the critical radiant flux at flame out, of horizontally mounted floor covering systems exposed to a flaming ignition in a test chamber which provides a graded radiant heat energy environment. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of a building whose upper surfaces are heated by flames of compartment. The test result is an average critical radiant flux (watts/square cm) which indicates the level of radiant heat energy required to sustain flame propagation in the flooring system. Theoretically, if a room fire does not impose a radiant flux that exceeds this critical level on a corridor floor covering system, flame spread will not occur.

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place

Dalton, GA 30721

706-226-3283

TEST NUMBER	0067837
DATE	07/05/01
PAGE	2 of 2

CLIENT	NETWORX/DIV. OF SHAW IND.
TEST METHOD CONDUCTED	ASTM E648-97 Critical Radiant Flux of Floor Covering Systems Using A Radiant Heat Energy Source, also referenced as NFPA 253 and FTM Standard 372

	DESCRIPTION OF TES	ST SAMPLE	
IDENTIFICATION	59224 Straightforward EW 24		
COLOR	00001		
ROLL	557076-9	This test report relates	
CONSTRUCTION	Textured Loop Pile	to the installation in accordance	
FIBER	100% Nylon	with the criteria set forth	
BACKING	EcoWorx	in the report. Any variation in the criteria may produce	
REFERENCE	different results.		

FLOORING SYSTEM ASSEMBLY		
SUBSTRATE UNDERLAYMENT ADHESIVE	Mineral-Fiber/Cement Board Direct Glue Down Sureset 5000	
CONDITIONING	Each test sample was conditioned a minimum of 96 hours at 70 \pm 5° F and 50 \pm 5% relative humidity.	

TEST RESULTS

TEST DATA	DISTANCE BURNED	TIME TO FLAME OUT	CRITICAL RADIANT FLUX
SPECIMEN 1	25 cm	9 minutes	.78 watts/sq cm
SPECIMEN 2	20 cm	15 minutes	.88 watts/sq cm
SPECIMEN 3	30 cm	16 minutes	.69 watts/sq cm

AVERAGE CRITICAL RADIANT FLUX	.78 watts/square cm
STANDARD DEVIATION	.10 watts/square cm
COEFFICIENT OF VARIATION	12%

APPROVED BY:

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place

Dalton, GA 30721

706-226-3283

TEST NUMBER	0067837
DATE	07/05/01
PAGE	2 of 2

CLIENT	NETWORX/DIV. OF SHAW IND.	
		the state of the state of the state of

	이 경기가 있다. 이 경기가 되었다면 하면 하는 것이 되었다. 그 경기가 되었다면 하는 것이 되었다면 하는 것이 되었다면 하는데
TEST METHOD CONDUCTED	AATCC Test Method 134-1996 Electrostatic Propensity
	of Carpets

	DESCRIPTION OF TEST SAMPLE
IDENTIFICATION	59224 Straightforward EW 24
COLOR	00001
ROLL	557076-9
CONSTRUCTION	Textured Loop Pile
FIBER	100% Nylon
BACKING	EcoWorx
REFERENCE	

TEST CONDITIONS	The sample is conditioned to equilibrium and tested at 70 \pm 2°F and 20 \pm 2% relative humidity.
SAMPLE PREPARATION	Shampooed according to GSA specifications
SUBSTRATE	Tested Over Grounded Metal Plate

NOTE: The tests reported below were conducted in accordance with the AATCC Test Method 134-1991, Section 8.6.2 "Step Test Procedure".

TEST RESULTS

DAY 2	AVERAGE
	1467: (1.10 m.)
-0.6 KV	-0.7 KV
-0.3 KV	-0.4 KV
	-0.3 KV NEG 0.7 KV

"The results of this test relate to the sample of carpet tested. It's static performance may be altered in service as a result of wear, soiling, cleaning, temperature, relative humidity, etc..."

APPROVED BY:

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the product tested. This report is provided for the exclusive use of the client to whom it is addressed. It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples tested and is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc., shall not be used under any circumstance in advertising to the general public.

QAIVN

714 Glenwood Place

Dalton, GA 30721

706-226-3283