M2 TECH TYPE X 5/8" GYPSUM BOARD

CERTAINTEED GYPSUM PALATKA, FL

The M2Tech Moisture and Mold Resistant Advantage:

- Specially engineered to provide enhanced protection against mold growth
- Type X for enhances fire resistance
- Achieves the best possible score of 10 for mold resistance per ASTM D3273
- Achieves less than 5% water absorption by weight after 2-hour immersions, as per ASTM C473 test method
- GREENGUARD Gold Certification

Architects, contractors and manufacturers continue to look for ways to reduce our industry's impacts on the environment while meeting customer demand for products that deliver beauty, comfort and performance. CertainTeed Gypsum, the leader in innovative drywall and performance wallboards, has the products to make your property healthier, quieter and more comfortable.

CertainTeed Gypsum operates its manufacturing facilities with a responsible and environmentally conscious ethic that includes reclamation, preservation of natural resources, recycling and waste management. CertainTeed, and Saint-Gobain, are committed to providing sustainable building products and to limiting our impacts on the environment while doing so. (See our CSR at https://www.saint-gobain.com/en/commitments/saint-gobains-csr-commitments.)

For more information visit: www.CertainTeed.com

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on several environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and

certifications that are designed to address these impacts and/or set performance thresholds – e.g., Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. <u>Accuracy of Results</u>: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any product line and reported impact. <u>Comparability</u>: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment			
DECLARATION HOLDER	CertainTeed Gypsum, Inc. • 20 Moores Road • Malvern, PA 19355 • USA			
DECLARATION NUMBER	4790745506.111.1			
DECLARED PRODUCT	M2 Tech Type X 5/8" Gypsum Board – Palatka, FL			
REFERENCE PCR	NSF International PCR for Gypsum F	Panel Products v.1e October 2019		
REFERENCE PCR STANDARD	EN 15804 (2012) ISO 21930 (2007) x ISO 21930 (2017)			
DATE OF ISSUE	July 1, 2023			
PERIOD OF VALIDITY	5 Years			
	Product definition and information ab	out building physics		
	Information about basic material and the material's origin			
	Description of the product's manufacture			
CONTENTS OF THE DECLARATION	Indication of product processing			
BECEARATION	Information about the in-use conditions			
	Life cycle assessment results			
	Testing results and verifications			
The PCR review was conducted	ed hv.	NSF International		
The Forteview was conducted	Su by.	PCR Peer Review Panel		
		ncss@nsf.org		
This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories		Cooper McCollum		
☐ INTERNAL ☐ EXTERNAL		Cooper McCollum, UL Environment		
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:		Thomas Sprin		
		Thomas P. Gloria, Industrial Ecology Consultants		

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Product Documentation

Product Description

M2Tech Type X Gypsum Board is a moisture and mold resistant gpsum board designed for use on interior walls and ceilings to provide enhanced moisture and mold resistance for fire-rated asseblies. It is comprised of a specially formulated moisture resistant core and encased in 100% recycled content moisture and mold resistant light violet colored face paper and bronze colored back paper. M2Tech Type X Gypsum board is used for new and renovation construction in residenial commercial and instituitional applications over wood and steel framing. M2Tech Type X Gypsum Boards may be finished, painted, textured or wallpapered following standar gypsum board techniquies. M2Tech Type X Gypsum board is used for new and renovation construction in residential, commercial and instituitional applications over wood and steel framing up to 24" o.c. (610 mm) in UL/cUL/ULC fire-rated designs.

The CertainTeed M2Tech Moisture and Mold Type X Advantage:

- Fire resistance ratings up to four hours
- M2Tech Technology provides additional zone of protection against moisture and mold
- Achieves best possible score of 10 (no mold growth) for mold resistance per ASTM D3273
- Less the 5% total water absorption by weight after 2-hour immersion per ASTM C473
- 100% recycled content moisture and mold resistant face and back paper
- GREENGUARD Gold Certified
- Consistently high quality
- Uniformly flat, attractive appearance; no shadows
- High edge hardness
- No wavy edges, warps, bows or deformities
- Uniform high-strenth cores eliminate crumbling and cracking
- Edge tapers consistent to form ferfec joints
- Excellent thermal barrier and sound attenuation qualities

Application

Gypsum board products provide multiple functions including wall covering, creating a barrier that controls noise, air, water and thermal transmission between the external environment and the interior space of a building, as well as other functions such as load carrying capacity, thermal mass and aesthetics.

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Technical Data

Technical Data M2 Tech Type X 5/8"						
Thickness	5/8" (15.9mm)					
Width	4' (1220 mm)					
Length	8', 10', 12'					
	(2440mm, 3050mm, 3660 mm)					
Weight	2.2 lbs./ft² (10.7 kg/m²)					
UNSPSC Code	301615					
CSI Code	092900					
Flame Spread Rating (ASTM E84, CAN/ULC-S102)	5					
Smoke Developed Rating (ASTM E84, CAN/ULC-	5					
S102)						
UL & ULC Fire Resistance (ASTM E119)	Yes					
Mold Resistance score (ASTM D3273)	10					
Water absorption (ASTM C473)	5%					
Applicable Stand	dards and References					
ASTM C1396	Standard Specification for Gypsum Board: Type X					
	Standard					
CAN/CSA-A82.27	Gypsum Board					
ASTM C840	Standard Specification for Application and Finishing of					
	Gypsum Board					
CAN/CSA-A82.31	Gypsum Board Application					
Gypsum Association GA-216	Application and Finishing of Gypsum Panel Products					
Gypsum Association GA-214	Quick Reference Guide Levels of Finish					
ICC International Building Code (IBC)						
ICC International Residential Code (IRC)						
National Building Code of Canada (NBCC)						

Table 1: Technical Data and Applicable Standards for CertainTeed M2 Tech Type X 5/8" Gypsum Board

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Description of Organization

This EPD is specific to the M2 Tech Type X Gypsum Board manufactured at the CertainTeed Gypsum facility in Palatka, FL.

 CertainTeed Gypsum 886 North Highway 17 Palatka, FL 32177

The Palatka, FL manufacturing facility operates integrated Environmental, Health, and Safety Management Systems that align with the ISO 14001 and ISO 45001 standards.

Flow Diagram

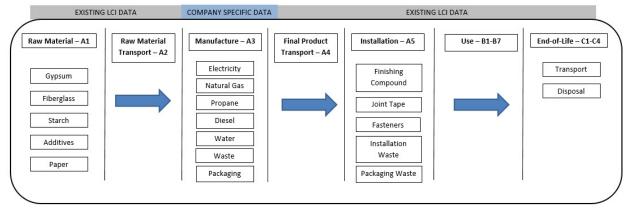


Figure 1: Life Cycle Boundary Flow Diagram

Material Content

Component	M2 Tech Type X 5/8"		
Internally recycled Gypsum	6.62%		
Natural Gypsum	87.96%		
Fiberglass	0.24%		
Starch	0.37%		
Silicone	0.78%		
Additives	0.36%		
Paper facings	3.68%		
Total kg/FU:	1036		

Table 2: Material Content for CertainTeed M2 Tech Type X 5/8" Gypsum Board (Palatka, FL)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Methodological Framework

Functional Unit

Functional Unit = 92.9 m² (1000 ft²)						
Product	Mass (kg/FU)	Thickness (cm)				
M2 Tech Type X Gypsum Board	1036	1.5875 cm (5/8")				

Table 3: Functional Unit

Reference Service Life

The Reference Service Life used in the study is 75 years, as specified in the PCR.

System Boundary

The life cycle analysis performed for this EPD is classified as a "cradle-to-grave" study. The system boundary includes raw material supply, manufacture, and transport; the M2 Tech Type X Gypsum Board manufacture in Seatlte, WA and packaging; product transportation to building site; installation; use phase, and product end-of-life.

	Description of the System Boundary (X=included in LCA: MND=module not declared)															
Pro	duct St	age	Constr Prod Sta	cess				Use Sta	ge			E	End of L	ife Stage	e	Benefits & Loads Beyond System Boundaries
Raw Material Supply	Transport	Manufacturing	Transport from the gate to the site	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-construction demolition	Transport	Waste Processing	Disposal	Reuse-Recover- Recycling Potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	MND

Table 4: System Boundary

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Allocation

There are several facilities in the United States and Canada that produce gypsum board product lines for CertainTeed. Each of the facilities produces multiple types of gypsum board. Allocation within each facility was conducted based on the machine hour run time production data provided by the facilities and the central CertainTeed Gypsum product team. This EPD is specific to the M2 Tech Type X Gypsum Board produced at the Palatka, FL facility.

Cut-Off Criteria

The cut-off criteria established for the study include materials, energy, and emissions data. For the purposes of this study, the crtieria are as follows:

- Mass Chemicals with a combined weight less than 1% of the mass of the modeled product may be excluded, providing its environmental relevance is not a concern.
- Hazardous substances as defined by the U.S. Resource Conservation and Recovery Act (RCRA), will be included if representing more than 0.1% of the product composition.
- Human activity factors were not included in the scope of this study.
- Capital equipment factors were not included in the scope of this study.

Data Sources

GaBi version 9.2 software system was used for modeling the life cycle of the CertainTeed M2 Tech Type X Gypsum Board products. Each background dataset was taken from the GaBi Thinkstep US Ecoinvent, USLCI databases, and Ecoinvent v3.

Data Quality

Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty. The data sources used are complete and representative of North America and Europe (depending on the material source) in terms of the geographic and technological coverage and are less than 10 years old. Any deviations from these initial data quality requirements for secondary data are documented in the report. Overall, the primary data from the manufacturing location is of very high quality, being directly tracked and measured by facility personel. Secondary data sets are of fair-to-good quality.

Period Under Review

Data for this LCA was collected for the 2019 calendar year.

Environment

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Estimates and Assumptions

Estimates and assumptions are required in life cycle analysis to constrain the project boundary or model when little or not data is available. In this study of CertainTeed M2 Tech Type X Gypsum Board, any estimates or assumptions made are appropriately documented in the background report.

Comparability

Comparison of the environmental performance of building and construction products using EPD information shall be based on the product's use and impacts at the building level. In general, EPDs may not be used for comparability purposes when not considered in a building context. As noted in the PCR, only EPDs generated from cradle-to-grave life cycle results and based on the same function, RSL, quantified by the same functional unit, and meeting all the conditions for comparability listed in ISO 14025:2006 and ISO 21930:2017 can be used to compare between products.

Technical Information and Scenarios

Manufacturing (A3)

The process begins with internally recycled gypsum material added to the natural gypsum raw material. Water is then added to produce a stucco slurry. Additional additives are mixed with the slurry as indicated by the specific product recipe. Large rolls of the facing and backing paper are loaded onto spools that feed the manufacturing line. The backing paper is fed through first, the slurry is applied to the backing paper, and then the facing paper is fed through the line and applied on top of the slurry. The wet board is fed through rollers to ensure proper thickness and allow the material set. The boards are then cut to length and aligned for processing through the ovens for the remainder of the drying process. After drying in the ovens, the boards are stacked by two, with end tape applied for shipping.

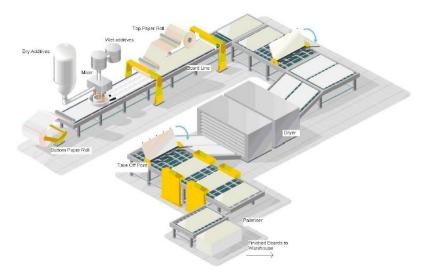


Figure 2: Gypsum Board Manufacturing Diagram

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Packaging (A3)

Packaging of the final product after production is included in the life cycle assessment. Packaging material includes the end tape applied at the end of the manufacturing process, as well as spacers used to stack the boards at varying heights for easier loading and unloading. The spacers used in the packaging are made at the manufacturing facility using rejected boards from the manufacturing process.

Transportation (A4)

Final products are transported via truck throughout North America. Distances and modes of transport for final product transportation are specified in the PCR.

Information	Unit	Value	
Type of transport	Product shipping to distribution center		
Type of vehicle	Commercial tractor-trailer truck		
Distance	km	448	
Fuel type	Diesel		
Amount of fuel	liters	1792 (4 L/km)	
Information	Unit	Value	
Type of transport	Product shipping to distribution center		
Type of vehicle	Rail		
Distance	km 208		
Fuel type	Diesel		
Amount of fuel	liters 1830.4 (8.8 L/km)		
Information	Unit	Value	
Type of transport	Product sl	hipping to construction site	
Type of vehicle	Single unit truck		
Distance	km 40		
Fuel type	Diesel		
Amount of fuel	liters 160 (4 L/km)		

Table 5: Final Product Transportation (A4)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Installation (A5)

The Gypsum Panel PCR specifies the default on-site installation waste scenario is 10% of the installed surface area. The PCR also specifies ancillary materials required for installation of gypsum panels as joint compound, joint tape, and fasteners. This study used the installation calculator located on the CertainTeed Gypsum website to calculate the amount of ancillary materials required for installation. In addition, disposal of the packaging material is included in the installation phase.

Installation (A5)	Unit	M2 Tech Type X 5/8"
Product loss	kg	103.6
Ancillary materials	kg	60.573
Joint Compound	kg	56.70
Joint Tape	kg	0.873
Fasteners	kg	3.00
Electricity consumption	kWh	0
Other energy consumption	kWh	0
Water consumption	m³	0
Direct emissions to ambient air,	kg	0
soil, and water		
Waste materials as output from	kg	103.6
installation process		

Table 6: Installation (A5)

Information	Unit	M2 Tech Type X 5/8"	
Mass of packaging waste	kg	1.938	
Type of packaging waste	Non-hazardous co-mingled		
	construction waste to landfill		
Biogenic carbon content of	kg CO ₂ eq	0.021	
packaging (where relevant)			

Table 7: Packaging Waste (A5)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Use (B1-B7)

As specified in the PCR, gypsum panel products are assumed to have no material or energy inputs or emissions during the use (B1), maintenance (B2), repair (B3), replacement (B4), or refurbishment (B5) life cycle stages. The PCR also specifies that gypsum panel products are assumed to have no operational energy use (B6) and no operational water use (B7) during the use phase of the life cycle.

Maintenance (B2)	Unit	M2 Tech Type X 5/8"
Information on maintenance	-	None required
Maintenance cycle	Number/RSL	0
Water consumption	m³	0
Ancillary inputs for	kg	0
maintenance		
Other resources	kg	0
Electricity consumption	MJ	0
Other energy carriers	MJ	0
Waste materials resulting from	kg	0
maintenance		

Table 8: Maintenance (B2)

Repair (B3)	Unit	M2 Tech Type X 5/8"
Information on repair process	-	None required
Repair cycle	Number/RSL	0
Water consumption	m³	0
Ancillary inputs for repair	kg	0
Other resources	kg	0
Electricity consumption	MJ	0
Other energy carriers	MJ	0
Waste materials resulting from	kg	0
repair		

Table 9: Repair (B3)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Replacement (B4)	Unit	M2 Tech Type X 5/8"
Information on replacement	-	None required
process		
Replacement cycle	Number/RSL	0
Material inputs for	kg	0
replacement		
Electricity consumption	MJ	0
Waste materials resulting from	kg	0
replacement		

Table 10: Replacement (B4)

Refurbishment (B5)	Unit	M2 Tech Type X 5/8"
Information on refurbishment	-	None required
process		
Refurbishment cycle	Number/RSL	0
Material inputs for	kg	0
refurbishment		
Electricity consumption	MJ	0
Waste materials resulting from	kg	0
refurbishment		

Table 11: Refurbishment (B5)

Operational Energy Use (B6)	Unit	M2 Tech Type X 5/8"
Electricity consumption	MJ	0
Operational Water Use (B7)	Unit	M2 Tech Type X 5/8"
Water consumption	m³	0

Table 12: Operational Energy and Water Use (B6-B7)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

End of Life (C1-C4)

The PCR supports the scenario for industry practices that all gypsum panel products shall be disposed in an appropriate construction and demolition landfill at the end of life. At this time, there are no known scenarios for the deconstruction of gypsum boards from the building at the end of life, although the PCR requires inclusion of the energy required for deconstruction and dust released in the air. The deconstruction module (C1) for this study is assumed to use 0.05 MJ of energy in order to be consistent with previous CertainTeed Gypsum Board studies. At this time, there is no known method for distinguishing gypsum board dust from the overall dust generated in the demolition of a building, so the deconstruction module assumed no dust generated. The PCR also specifies the assumption that no gypsum panel waste goes to a waste processing facility prior to disposal in a landfill, so the waste processing module (Module C3) is assumed to be burden free. The product's end-of-life disposition is assumed to be inert in a landfill per the PCR. Disposal in an appropriate construction and demolition landfill or in commercial incineration facilities is permissible and should be done in accordance with local, provincial, and federal regulations.

Parameter		Unit	Value	
Assumptions for scenario development		-	Disposal inert in landfill	
			transported by truck	
	End of Life (C1-C4)			
Deconstruction	Energy use	MJ	0.05	
Collection	Collected separately	kg	0.00	
Process	Collected with mixed construction	kg	932.0	
	waste			
	Reuse	kg	0.00	
	Recycling	kg	0.00	
	Landfill	kg	0.00	
Recovery	Incineration	kg	0.00	
	Incinerations with energy recovery	kg	0.00	
	Energy conversion efficiency rate	-	0.00	
Disposal	Product or material for final	kg	932.0	
Dispusal	deposition			

Table 13: End-of-Life (C1-C4)

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

LCA Results

TRACI Impact Assessment Indicators (North America)

M2 Tech Type X Gypsum Board – TRACI Environmental Impacts – Palatka, FL							
	Global	Global					
	Warming	Warming					
	Potential,	Potential,	Ozone			Smog	Abiotic
	excl.	incl.	Depletion	Acidification	Eutrophication	Creation	Depletion
	biogenic	biogenic	Potential	Potential	Potential	Potential	Potential (fossil)
	kg CO2 eq	kg CO2 eq	kg CFC 11 eq	kg SO₂ eq	kg N eq	kg O₃ eq	MJ
Raw Materials (A1)	5.14E+01	-2.49E+01	3.84E-05	2.66E-01	1.04E-01	4.72E+00	8.46E+01
Raw Material Transport (A2)	1.98E+00	1.98E+00	3.50E-15	3.06E-02	1.29E-03	6.01E-01	3.56E+00
Manufacture (A3)	1.89E+02	1.89E+02	6.44E-13	8.27E-02	6.21E-03	2.35E+00	4.23E+02
Total A1-A3:	2.42E+02	1.66E+02	3.84E-05	3.79E-01	1.11E-01	7.67E+00	5.12E+02
Final Product Transport (A4)	4.76E+01	4.76E+01	9.04E-14	1.50E-01	1.52E-02	4.07E+00	8.91E+01
Installation (A5)	6.05E+01	2.25E+01	4.26E-07	3.23E-01	5.34E-02	3.63E+00	1.58E+02
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Deconstruction (C1)	4.38E+00	4.38E+00	7.05E-15	2.67E-02	7.77E-04	3.99E-01	7.50E+00
Waste Transport (C2)	1.14E+01	1.14E+01	2.17E-14	3.46E-02	3.55E-03	7.90E-01	2.14E+01
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of Life Disposal (C4)	3.95E+01	3.98E+01	1.28E-12	1.73E-01	9.66E-03	3.05E+00	7.68E+01
Total Cradle-to-Grave:	4.03E+02	2.89E+02	3.88E-05	1.06E+00	1.92E-01	1.90E+01	8.60E+02

Table 14: Cradle-to-Grave TRACI Environmental Impacts

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

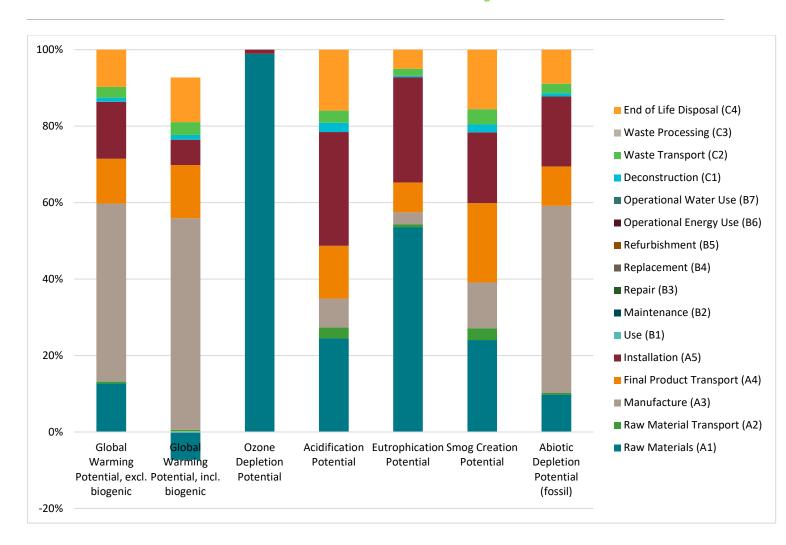


Figure 3: Cradle-to-Grave TRACI Environmental Impacts

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

EN 15804 Impact Assessment Indicators (Europe)

M2 Tech Type X Gypsum Board – EN 15804 Environmental Impacts – Palatka, FL							
	GWP (EN),	GWP (EN),	ODP (EN)	AP (EN)	EP (EN)	POCP (EN)	ADPF (EN)
	Fossil	Biogenic					
	kg CO2 eq	kg CO2 eq	kg R 11	kg SO2 eq	kg phosphate	kg ethane	MJ
			eq		eq	eq	
Raw Materials (A1)	5.29E+01	-7.59E+01	3.56E-05	3.03E-01	7.05E-03	2.45E-01	8.14E+02
Raw Material Transport (A2)	2.01E+00	1.08E-03	1.69E-13	3.56E-02	5.90E-06	2.64E-02	2.50E+01
Manufacture (A3)	1.95E+02	1.05E-01	3.16E-11	9.07E-02	5.24E-05	1.17E-01	2.88E+03
Total A1-A3:	2.50E+02	-7.58E+01	3.56E-05	4.30E-01	7.11E-03	3.88E-01	3.72E+03
Final Product Transport (A4)	4.84E+01	9.42E-02	4.35E-12	1.62E-01	2.43E-04	1.89E-01	6.27E+02
Installation (A5)	6.30E+01	-3.78E+01	3.99E-07	3.88E-01	2.72E-03	1.93E-01	1.30E+03
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Deconstruction (C1)	4.45E+00	1.06E-03	3.40E-13	3.21E-02	1.25E-06	1.79E-02	5.27E+01
Waste Transport (C2)	1.16E+01	8.93E-03	1.04E-12	3.73E-02	5.82E-05	3.59E-02	1.51E+02
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of Life Disposal (C4)	4.06E+01	4.17E-01	6.32E-11	2.01E-01	1.26E-04	1.49E-01	5.89E+02
Total Cradle-to-Grave:	4.16E+02	-1.13E+02	3.60E-05	1.21E+00	1.03E-02	9.46E-01	6.41E+03

Table 15: Cradle-to-Grave EN 15804 Environmental Impacts

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

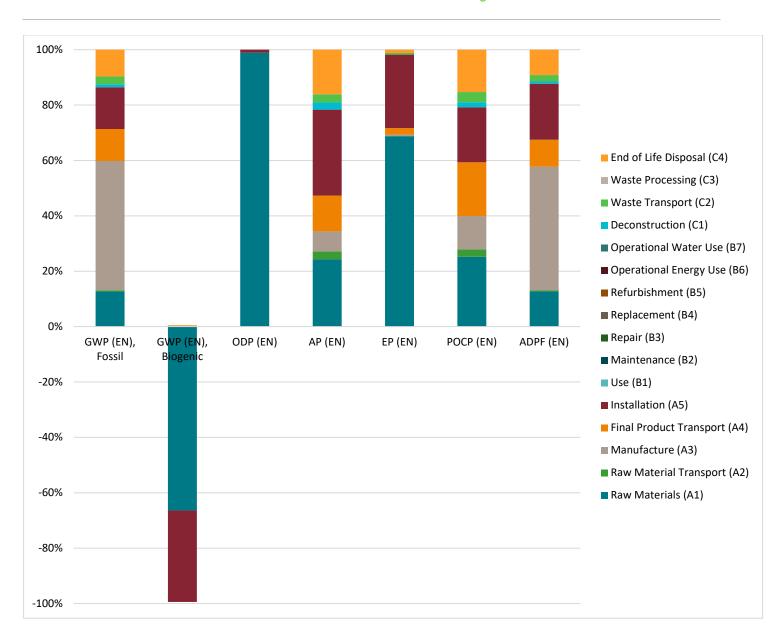


Figure 4: Cradle-to-Grave EN 15804 Environmental Impacts

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Use of Primary Resources

Use of Primary Resources								
	NRPR _E : Non-							
	DDD + Damassahla		_	NDDD . Total				
	RPR _E : Renewable	DDD . Tatal of	renewable primary	NRPR _T : Total use				
	primary energy	RPR _T : Total use of	resources used as	of non-renewable				
	used as energy	renewable primary	an energy carrier	primary energy				
	carrier (fuel)	energy resources	(fuel)	resources				
	MJ	МЈ	MJ	MJ				
Raw Materials (A1)	1.51E+03	1.51E+03	8.18E+02	8.18E+02				
Raw Material Transport (A2)	6.88E-01	6.88E-01	2.69E+01	2.69E+01				
Manufacture (A3)	2.27E+01	2.27E+01	2.88E+03	2.88E+03				
Total A1-A3:	1.53E+03	1.53E+03	3.73E+03	3.73E+03				
Final Product Transport (A4)	2.62E+01	2.62E+01	6.73E+02	6.73E+02				
Installation (A5)	3.19E+02	3.19E+02	1.31E+03	1.31E+03				
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Deconstruction (C1)	3.92E-01	3.92E-01	5.66E+01	5.66E+01				
Waste Transport (C2)	6.28E+00	6.28E+00	1.61E+02	1.61E+02				
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
End of Life Disposal (C4)	5.69E+01	5.69E+01	6.07E+02	6.07E+02				
Total Cradle-to-Grave:	1.94E+03	1.94E+03	6.51E+03	6.51E+03				

Table 16: Use of Primary Resources

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Use of Secondary Resources

Use of Secondary Resources						
			NRSF: Non-		FW: Use of net	
	SM: Secondary	RSF: Renewable	renewable	RE: Recovered	freshwater	
	materials	secondary fuels	secondary fuels	energy	resources	
	kg	MJ	MJ	MJ	m³	
Raw Materials (A1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.39E+00	
Raw Material Transport (A2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.37E-03	
Manufacture (A3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.26E+00	
Total A1-A3:	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.65E+00	
Final Product Transport (A4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.40E-02	
Installation (A5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.68E+00	
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Deconstruction (C1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.57E-04	
Waste Transport (C2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.26E-02	
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of Life Disposal (C4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.72E-02	
Total Cradle-to-Grave:	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.53E+00	

Table 17: Use of Secondary Resources

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Renewable and Non-Renewable Energy by Source

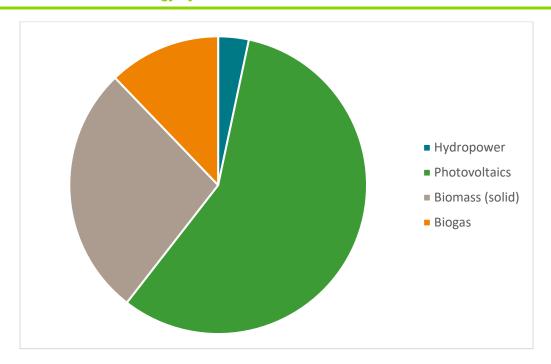


Figure 5: Renewable Energy by Source

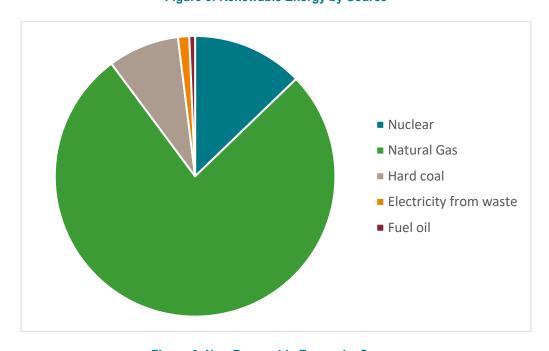


Figure 6: Non-Renewable Energy by Source

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Waste Flows

Waste Flows							
	., ,		High level				
	Hazardous		radioactive waste,	level radioactive waste,			
	waste .	Non-hazardous	conditioned, to	conditioned, to final			
	disposed	waste disposed	final repository	repository			
	kg	kg	kg	kg			
Raw Materials (A1)	1.93E-05	1.58E+00	2.17E-05	6.87E-04			
Raw Material Transport (A2)	1.01E-06	1.64E-02	1.11E-06	3.02E-05			
Manufacture (A3)	1.13E-06	3.25E+00	7.97E-06	2.17E-04			
Total A1-A3:	2.15E-05	4.84E+00	3.08E-05	9.34E-04			
Final Product Transport (A4)	9.49E-06	3.98E-02	1.51E-06	4.06E-05			
Installation (A5)	1.47E-06	1.07E+02	1.38E-05	3.83E-04			
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Deconstruction (C1)	1.86E-08	9.16E-03	1.33E-07	3.61E-06			
Waste Transport (C2)	1.11E-06	4.65E-03	1.76E-07	4.74E-06			
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of Life Disposal (C4)	4.17E-06	9.34E+02	6.16E-06	1.62E-04			
Total Cradle-to-Grave:	3.77E-05	1.05E+03	5.25E-05	1.53E-03			

Table 18: Waste Flows

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

Output Material Flows

Output Material Flows							
	Components for reuse			Recovered energy exported			
	kg	kg	kg	kg			
Raw Materials (A1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Raw Material Transport (A2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Manufacture (A3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Total A1-A3:	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Final Product Transport (A4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Installation (A5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Use (B1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Maintenance (B2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Repair (B3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Replacement (B4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Refurbishment (B5)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Energy Use (B6)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Operational Water Use (B7)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Deconstruction (C1)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Waste Transport (C2)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Waste Processing (C3)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
End of Life Disposal (C4)	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Total Cradle-to-Grave:	0.00E+00	0.00E+00	0.00E+00	0.00E+00			

Table 19: Output Material Flows

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

LCA Interpretation

Based on the results from the life cycle assessment model, the life cycle impacts are strongly driven by the manufacture. The impacts of the manufacture are primarily attributed to the natural gas usage needed for the ovens to dry the boards. The natural gas usage in the manufacture accounts for as much as 49% of the cradle-to-grave environmental impact potentials for CertainTeed M2 Tech Type X 5/8" Gypsum Boards at the Palatka, FL facility.

The manufacturing of gypsum board (A3) has the highest contribution to Global Warming Potential impacts. The use of internally recycled gypsum material helps to reduce the overall environmental impact potentials by reducing the amount of external raw materials needed for the process.

Another potentially significant contributor to the overall environmental impact results is seen in the results for the installation of the Gypsum Boards. The installation waste accounts for the majority of the impacts for installation. The PCR requires the use of a 10% installation waste scenario in the absence of actual data. As there is currently no actual installation data available, and because installation techniques may vary widely among installers, CertainTeed has little to no influence on the installation impacts.

Additional Environmental Information

Environment and Health During Manufacture

CertainTeed and Saint-Gobain have well-established Environmental, Health, and Safety (EHS) and product stewardship programs, which help to enforce proper evaluation and monitoring of chemicals and raw materials chosen to manufacture products. These programs ensure that all environmental and OSHA requirements are met or exceeded to ensure the health and safety of all employees and contractors.

The Palatka, FL CertainTeed Gypsum manufacturing facility operates integrated Environmental, Health, and Safety Management Systems that align with the ISO 14001 and ISO 45001 standards.

Further Information

https://www.certainteed.com/drywall/

LCA Development

This EPD and the corresponding LCA were prepared by Saint-Gobain Corporation North America in Malvern, PA.

M2 Tech Type X 5/8" Gypsum Board Palatka, FL

According to ISO 14025/44/40 Series and ISO 21930

References

- Product Category Rules for Building-Related Product and Services: Part A Life Cycle Assessment Calculation Rules and Report Requirements, Version 3.2 2018. UL Environment.
- Product Category Rule for Environmental Product Declarations: PCR for Gypsum Panel Products. April 23, 2020. NSF International.
- UL Program Instructions, Versions 2.5 March 2020. UL Environment.
- ISO 14040: 2006 Series Environmental Management-Life Cycle Assessment
- EN 15804 Sustainability of construction works Environmental Product Declarations Core rules for the product category of construction products
- ISO 21930:2017 Sustainability in building construction Environmental declaration of building products
- GaBi Ecoinvent Database. www.thinkstep.com
- US LCI Database. www.nrel.gov.lci
- Ecoinvent v3 Database. http://ecoinvent.org/
- Life Cycle Assessment: CertainTeed Gypsum, Gypsum Board EPD Generator LCA Methodology Report. 2020. CertainTeed Saint-Gobain North America EHS&S.
- CertainTeed Gypsum Website. https://www.certainteed.com/drywall/

